
Professor Tim Wood - The George Washington UniversityProfessor Tim Wood - The George Washington University

CS 2113
Software Engineering

From C to Java

git clone https://github.com/cs2113f18/c-to-java.git
cd c-to-java
./install_java

Do this now!!!

Previously...
• We finished up C

• There is plenty more to learn, but you've had a taste

• You are completing Module 3
• linked lists and more complex data structures

!2

This Time...
• A bit more C
• More on Linked Lists
• Algorithmic thinking, APIs
• Going from C to Java

!3

Final notes on C
• The benefits of C:

• Low level coding
• Direct access to memory
• Ubiquitous
• Low overhead

• The dangers of C:
• Direct access to memory
• Minimal type checking
• No support for objects
• No variable initialization

!4

Final notes on C
• Remember the memory model

• This is not C specific
• But other languages hide the details

• Most C bugs are related to  
how you access memory
• If in doubt... draw it out!

• How to learn a new language:
• Small steps!
• Write code, compile, test, repeat
• Look at library reference examples

!5
source: Head First C

Plan big, code small
• Plan your overall approach

• Write pseudo code for your algorithm
• Figure out what data, functions, objects you will need
• Break the problem into small pieces

• Write code piece by piece
• Never try to write your whole program at once
• Write a small piece and test it out
• Move to the next step when you know one piece works

!6

The Linked List
• What is a linked list?
• What can it hold?
• How does it compare to...

• An array from the stack? int days[365];
• or the heap? int *days=malloc(365*sizeof(int));

!7

The Linked List
• Strength: Very flexible

• Can grow at both ends or in the middle
• Fast to add elements anywhere

• Weakness: Slow access time
• Must traverse through list to find element
• Memory overhead due to "next" pointers

!8

Fixed Size ArrayDynamic Linked List

END

What functions do we need?
• A linked list should be able to...

• create
• search
• delete
• insert - in middle, at end, etc
• copy the full list
• check if empty
• how many elements?
• retrieve data (don’t want the list to be specific to the data type)

!9

What functions do we need?
• A linked list should be able to...

• Add a new element at the end
• Add a new element at the start
• Add a new element in sorted order
• Add an element at a specific location
• Delete a specific element
• Delete all elements
• Delete the last N elements
• Delete the first N elements
• Print all the elements
• Return the length of the list
• Create a new empty list

!10

Application Program Interface
• We just did software engineering!

• SE is about a lot more than writing code and knowing syntax

• An API describes an interface
• What functionality is exposed? What data is available?

• Is our Linked List interface C-specific?

!11

What data do we need?
• How should we

represent the list?

• Linked List
• pointer to first Node

• Node
• String name
• pointer to next Node

!12

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END

What data do we need?
• How should we

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list

!13

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END

List

What data do we need?
• How should we

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list
• Last Node in list
• Count of nodes, etc

!14

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END

List

LL: Functions + Data

• Add a new element at the end
• Add a new element in sorted order
• Delete a specific element
• Delete all elements
• Print all the elements
• Return the length of the list
• Create a new empty list

!15

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list

A Linked List in C
• We will use two types of structs

• LList: represents the list as a whole, used by application
• LNode: used for each entry in the list, stores actual data

• This gives a nicer API than requiring
programmer to understand internals of LNodes

!16

LList
head

LNode
data
next

NULL
one of
these

lots of
these

LNode
data
next

A Note on NULL
• NULL is a reserved keyword in C

• Often used as a "sentinel" to tell whether a pointer has been
initialized

• Are undefined variables automatically set to NULL
in C?
• No!

• We will have to carefully set pointers to NULL by
ourselves!

• Secret: NULL is actually just the number 0!

!17

Coding a Linked List
• What is a linked list made of?

!18

LNode
name

latitude
longitude

next

LNode
name

latitude
longitude

next

LList
head

Coding a Linked List
• What is a linked list made of?

!19

struct LNode {
 char name
 double latitude
 longitude
 LNode *next
};

struct LList {
 LNode *head;
};

LNode
name

latitude
longitude

next

LNode
name

latitude
longitude

next

LList
head

Linked Lists and Memory

int main() {
 struct LList* list;
 struct LNode *a, *b;
 list = NULL;
 a = NULL; b = NULL; c = NULL;

}

Stack
Address Name Contents

10000
10004
10008

10012
10016

Heap
Address Alloc? Contents

50000
49996
49992
49988
49984
49980
49976
49972
49968

Assume ints and pointers take 4 bytes.

list 45 89 52

struct LNode {
 int data;
LNode* next;

};

struct LList {
 LNode* head;
};

Linked Lists and Memory

int main() {
 struct LList* list;
 struct LNode *a, *b;
 list = NULL;
 a = NULL; b = NULL; c = NULL;

 list = (struct LList*) malloc(sizeof(LList));
 a = (struct LNode*) malloc(sizeof(struct LNode));
 b = (struct LNode*) malloc(sizeof(struct LNode));
 c = (struct LNode*) malloc(sizeof(struct LNode));
 a->data = 45;
 b->data = 89;
 c->data = 52;
 list->head = a;
 a->next = b;
 b->next = c;
 c->next = NULL;

Stack
Address Name Contents

10000 list 50000
10004 a 49996
10008 b 49988

10012 c 49980
10016

Heap
Address Used? Contents

50000 Y head: 49996
49996 Y a->data: 45
49992 Y a->next: 49988
49988 Y b->data: 89
49984 Y b->next: 49980
49980 Y c->data: 52
49976 Y c->next: NULL
49972 N
49968 N

Assume ints and pointers take 4 bytes.

list 45 89 52

struct LNode {
 int data;
LNode* next;

};

struct LList {
 LNode* head;
};

Linked Lists and Memory

!22

int main() {
 struct LList* list;
 struct LNode *a, *b, *c;
 list = NULL;
 a = NULL; b = NULL; c = NULL;
 list = malloc(sizeof(struct LList));
 a = malloc(sizeof(struct LNode));
 b = malloc(sizeof(struct LNode));
 c = malloc(sizeof(struct LNode));
 list->head = a;
 a->data = 45;
 a->next = b;
 b->data = 89;
 b->next = c;
 c->data = 52;
 c->next = NULL;
}

Stack
Address Name Contents

10000 list 50000
10004 a 49996
10008 b 49988

10012 c 49980
10016

Heap
Address Alloc? Contents

50000 Y 49996
49996 Y 45
49992 Y 49988
49988 Y 89
49984 Y 49980
49980 Y 52
49976 Y 0
49972 N
49968 N

Assume ints and pointers take 4 bytes.

list 45 89 52

struct LNode {
 int data;
LNode* next;

};

struct LList {
 LNode* head;
};

Remember, really
memory just holds
data, not names!

Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax

!23

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

NULL

List

// in class solution
input: list we want to print
return if the list is empty
go to first node and print it
while there is a next node
 go to the next node
 print that node

Edge cases:
 - last node (include and stop)
 - empty list

Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax

!24

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

END

List

Point at the first node in the list

Start loop...
 Print out the data for the current node
 If the next node in the list is empty, exit
 Else, point at the next node in the list
 Go back to start of loop

Edge cases:
 Uninitialized List
 Empty list
 End of list

Printing out a L.L.

!25

LList
head

LNode
data
next

NULL

LNode
data
next

void LList_print(struct LList *list) {
{

/* Print a list from head to tail. */
 if(list == NULL || list->head == NULL) return;
 struct LNode *p = list->head;
 print(p);
 while(p->next != NULL) {
 p = p->next;
 print(p);
 }

}

input: list we want to print
return if the list is empty
go to first node and print it
while there is a next node
 go to the next node
 print that node

Printing out a L.L.

!26

LList
head

LNode
data
next

NULL

LNode
data
nextvoid LList_print(struct LList *list) {

 struct LNode *node;
 int i = 0;
 if (list == NULL)
 return;
 node = list->head;
 if (node == NULL)
 return;
 while(1) {
 i++;
 printf("%d: %d\n", i, node->data);
 node = node->next;
 if(node == NULL) {
 break;
 }
 }
}

Algorithm for append

!27

input: list we want to add to and some new data

if list is empty:
 add new element and make it the head of the list
 return
go to first node
while there is a next node
 go to the next node
(now we are at the last node in the list)
create a new element, and set it as the next node
mark this node as the last in the list

Edge cases:

Algorithm for append

!28

Add node to end of a list:
 inputs: List to add to, data to store inside node

allocate memory for new Node

Fill data into newNode

Set newNode->next = NULL

if(head of list is NULL)

 point list->head to newNode

else

 step through the list until we reach the end

 set the last entry's next pointer = newNode

Edge cases:
Uninitialized List, Empty list, End of list
Out of memory for new Entry

C-ish Languages
• C++

• Enhances C with support for objects and classes
• Adds the Standard Template Library (STL) for data structures
• Slightly more flexible language
• Just as powerful... just as dangerous

• Objective C and Swift
• Primarily used by Apple
• Superset of C
• Adds objects to C in a more confusing way than C++ / Java
• Extensive library support and custom IDE makes it more bearable

• So does the potential for earning millions on the App Store!

!29

Moving to Java
• Java Syntax

• You should already know this...
• Use book to refresh on basics

• The textbook is "Head First Java" (2005 edition)
• Readings will be assigned each week
• Read them before LAB
• or else...

!30

Midterm
• Mix of written on paper and coding on computer

• (If I can get access to a second computer lab)
• List of topics:

• https://cs2113f18.github.io/midterm.html
• Practice Problems:

• https://cs2113f18.github.io/c/review.html
• C Reference Sheet:

• https://cs2113f18.github.io/c/c-reference.pdf

!46

https://cs2113f18.github.io/midterm.html
https://cs2113f18.github.io/c/review.html
https://cs2113f18.github.io/c/c-reference.pdf

