CS 2113
Software Engineering

W\
... aOWN**
S O ‘“\5 “ From C to Java

git clone https://github.com/cs2113f18/c-to-java.git

cd c-to-java
./install java

Previously...
» We finished up C

» There is plenty more to learn, but you've had a taste

* You are completing Module 3
* linked lists and more complex data structures

This Time...

* A bit more C

* More on Linked Lists

» Algorithmic thinking, APls
 Going from C to Java

Final notes on C
« The benefits of C:

» Low level coding

» Direct access to memory
- Ubiquitous

- Low overhead

- The dangers of C:

 Direct access to memory
- Minimal type checking
* No support for objects
» No variable initialization

Final notes on C

_ 5&3{ address

Remember the memory model Mﬁ,@\m« SOOI
- This is not C specific ANER AR
- But other languages hide the details N ARE -8

- i = Q— o

Most C bugs are related to

how you access memory
* |f in doubt... draw it out!

How to learn a new language: | ——— —

Small steps! |
- Write code, compile, test, repeat
» Look at library reference examples

~LINEAS, # VARSIZET _J
~MOVEM.L DO-D7/A1-AB,-(SP) - &
| |-MOVE.L SP, SAVESTK(AS) ,
| _MOVE.L SP, SAVEAS(AB)._-_L__g__
MOVJE L GRAFGLOBAIB(AS),AO .__', -
. | _J R

4

Rﬂd—-on"j ™

>

source: Head First C
" Lowest Jddrcn

Plan bi1g, code small

» Plan your overall approach

» Write pseudo code for your algorithm
 Figure out what data, functions, objects you will need
» Break the problem into small pieces

» Write code piece by piece

* Never try to write your whole program at once
- Write a small piece and test it out
* Move to the next step when you know one piece works

The Linked List

« What is a linked list?
« What can it hold?

» How does it compare to...

* An array from the stack? int days[365];
- orthe heap? int *days=malloc(365*sizeof(int));

The Linked List

» Strength: Very flexible

 Weakness: Slow access time

DynamiC Linked List Fixed Size Array

=
!V,{

<

!‘

END

What functions do we need?
A linked list should be able to...

create
» search
* delete
* Insert - in middle, at end, etc
+ copy the full list
 check if empty
* how many elements?
- retrieve data (don’t want the list to be specific to the data type)

What functions do we need?
A linked list should be able to...

Application Program Interface

» We just did software engineering!
- SE is about a lot more than writing code and knowing syntax

» An API describes an interface
- What functionality is exposed? What data is available?

* |s our Linked List interface C-specific?

11

What data do we need?

 How should we

represent the list?

- Linked List

» pointer to first Node

* Node

- String name
» pointer to next Node

Dynamic Linked List

Hermione

Harry /. Hagrid
Draco
Dum]%led%re

\ Lavlav
Neville i

Luna END

12

What data do we need?

 How should we

represent the list?

* Node data type

 Name
* House
- Wand type
* Next node

- List data type

* First Node In list

Dynamic Linked List

Harry

Hermione

Hagrid
T
Draco
k"/’////)ﬂ!!imﬂeqﬁme

\\ Lavlav
Neville

Luna g END

List

13

What data do we need?

 How should we

represent the list?

* Node data type

 Name
* House
- Wand type
* Next node

- List data type

* First Node In list
« Last Node In list
« Count of nodes, etc

Dynamic Linked List

Harry

Hagrid

-
Draco
k"/’////)ﬂ!!imﬂeqﬁme

Hermione

List

\\ Lavlav
Neville

Luna END

14

[.I.: Functions + Data

Add a new element at the end * Node data type
Add a new element in sorted order ' Eame

° ouse
Delete a specific element . Wand type
Delete all elements - Next node

Print all the elements
Return the length of the list
Create a new empty list

- List data type
» First Node In list

15

A Linked List in C

» We will use two types of structs

 LList: represents the list as a whole, used by application
* LNode: used for each entry in the list, stores actual data

» This gives a nicer APl than requiring
programmer to understand internals of LNodes

lots of
these

16

A Note on NULL

* NULL is a reserved keyword in C

- Often used as a "sentinel" to tell whether a pointer has been
initialized

» Are undefined variables automatically set to NULL
in C?
- No!

» We will have to carefully set pointers to NULL by
ourselves!

- Secret: NULL is actually just the number 0!

17

Coding a Linked List

« What is a linked list made of?

LList

LNode
name name
latitude latitude
longitude longitude

next

next

18

Coding a Linked List

« What is a linked list made of?

struct LNode {
char name
double latitude
longitude
LNode *next

}:

LList

struct LList {
LNode *head;

LNode
}i name name

latitude latitude
longitude longitude

next

next

19

Linked Lists and Memory

struct LNode { struct LList { Address Contents

int data;
! LNode* head; 10000
LNode* next; 10004

10008
10012
int main() { 10016

struct LList* list;
struct LNode *a, *b;

list = NULL; Address Contents

a = NULL; b = NULL; ¢ = 50000

49996
49992
49988
49984
49980
49976
49972
49968

list 45 89 52

Assume ints and pointers take 4 bytes.

[inked Lictc and Memo

struct LNode {
int data;

struct LList {

1y

LNode* head; Address Name Contents
LNode* next; _
10000 list 50000
} i 10004 a 49996
int main() { 10008 b 49988
struct LList* list; 10012 C 49980
struct LNode *a, 10016
list = NULL;
a = NULL; b = NULL; = NULL; Heap
list = (struct LList*) malloc(sizeof (LList)); Address Used? Contents
a = (struct LNode*) malloc(sizeof(struct LNode)); 50000 Y head: 49996
b = (struct LNode*) malloc(sizeof (struct LNode)); 49996 Y a->data: 45
c = (struct LNode*) malloc(sizeof (struct LNode)); 49992 Y a->next: 49988
a->data = 45; 49988 Y b->data: 89
b->data = 89; 49984 Y b->next: 49980
c->data = 52; 49980 Y c->data: 52
list->head = 49976 Y c->next: NULL
a->next = b; 49972 N
b->next = c¢; 29968 N
c->next = NULL;

Assume ints and pointers take 4 bytes.

Linked Lists and Memory

Stack
stl.:uct LNode { struct LList { Address Name Contents
int data; LNode* head; 10000 list 50000
LNode* next; . 10004 a 49996
}; }i 10008 b 49988
10012 c 49980
int main() { 10016
struct LList* list;
struct LNode *a, *b, *c; Heap
list = NULL; Address Alloc? Contents
a = NULL; b = NULL; ¢ = NULL; =0000 v 219996
list = malloc(sizeof(struct LList)); 49996 v 15
a = malloc(sizeof(struct LNode)); 49992 Y 49988
b = malloc(sizeof(struct LNode)); 49988 Y 89
c = malloc(sizeof(struct LNode)); 49984 Y 49980
list->head = a; 49980 Y 52
a->data = 45; 49976 0
a->next = b; Remember, really s \
858 N

b->data = 89;
b->next = c;
c->data =
c->next = NULL;

} Assume ints and pointers take 4 bytes.

memory just holds

data, not names!

list IM45 89 52

I
Ul
N

we

Algorithm to print a LList

- What steps do we need to take?
+ Don't worry about C syntax

// in class solution

input: [ist we want to print Harry (. Hagrid
return if the (ist is empty .

go to first node and print it
while there is a next node

Hermione
go to the next node k * Lavlav)
. Neville
print that node

23

Algorithm to print a LList

- What steps do we need to take?
+ Don't worry about C syntax

Point at the first node in the [ist

Start loop...
Print out the data for the current node
If the next node in the list is empty, exit
Else, point at the next node in the [ist
Go back to start of loop

Empty list
End of list 24

Printing out a L.L.
LNode LNode

head data data
next next

void LList print(struct LList *list) {

{
/* Print a list from head to tail. */

if(list == NULL || list->head == NULL) return;
struct LNode *p = list->head;
print(p);
while(p->next != NULL) {
p = p->next;
print(p);

input: list we want to print
return if the [list is empty

go to first node and print it
while there is a next node
go to the next node
print that node

Printing out a L.L.

| lJLiE?t | LNode
data

void LList print(struct LList *list) ({

}

struct LNode *node;
int i = 0;
if (list == NULL)
return;
node = list->head;
if (node == NULL)
return;
while (1) {
i++;
printf("%d: %d\n", i, node->data);
node = node->next;
if (node == NULL) {
break;
}
}

NULL

26

Algorithm for append

input: list we want to add to and some new data

if list is empty:
add new element and make it the head of the list
returm
go to first node
while there is a next node
go to the next node
(mow we are at the last node in the list)
create a new element, and set it as the next node
mark this node as the last in the [ist

Algorithm for append

Add node to end of a list:
inputs: List to add to, data to store inside node

allocate memory for new Node
Fill data into newNode

Set newNode->next = NULSL
if(head of list is NULL)

point list->head to newNode
else

step through the (ist until we reach the end

set the last entry's next pointer = newNode

Ellge cases:
Uninitialized List, Empty list, End of list

Out of memory for new Entry

C-1sh Languages

» C++

- Enhances C with support for objects and classes

- Adds the Standard Template Library (STL) for data structures
- Slightly more flexible language

- Just as powerful... just as dangerous

 Objective C and Swift

* Primarily used by Apple
« Superset of C
 Adds objects to C in a more confusing way than C++ / Java

» Extensive library support and custom IDE makes it more bearable
- So does the potential for earning millions on the App Store!

29

Moving to Java

- Java Syntax

 You should already know this...
« Use book to refresh on basics

» The textbook is "Head First Java" (2005 edition)

- Readings will be assigned each week
- Read them before LAB
* Or else...

30

Midterm

» Mix of written on paper and coding on computer
» (If | can get access to a second computer lab)

» List of topics:
- https://cs2113f18.qgithub.io/midterm.html
* Practice Problems:
https://cs2113118.qithub.io/c/review.html

» C Reference Sheet:
» https://cs2113118.qithub.io/c/c-reference.pdf

46

https://cs2113f18.github.io/midterm.html
https://cs2113f18.github.io/c/review.html
https://cs2113f18.github.io/c/c-reference.pdf

