
Professor Tim Wood - The George Washington University

Professor Tim Wood - The George Washington University

CS 2113
Software Engineering

Java Module 2:
Object Oriented Programming

git clone https://github.com/cs2113f18/lec-oop.git

Like Tacos?
• CS Research Isn't Scary:

• Friday, 5pm-7pm in SEH Lehman Auditorium/Green wall area
• 5pm is the panel, 6pm is a postering session with catering from

District Taco

!2

Last Time
• Moving from C to Java

• Basic syntax, object creation

• Project 1:
• Linked Lists
• How's it going?
• Start coding ASAP!

• Get help:
• Piazza, email
• Prof. Wood: Wed 6-7pm or by appointment
• Office hours: check piazza pinned post

!3

8-10 hours per week!

Java Module 1
• Your code goes in your README file
• Use proper markdown formatting!

!4

```java	

public	class	Hello{	
//	…	

}	
```

Markdown syntax to start a
code block with java syntax

highlighting!

This Time
• Java Objects and Classes

• Objected oriented vs Procedural programming
• Access control
• Inheritance

• Basic UML Diagrams
• Representing code visually
• Class Diagrams

!5

The Java docs
• The main documentation of the Java language is in

the form of "javadocs"
• Created from informative comments in the actual source code

• Java 10
• https://docs.oracle.com/javase/10/docs/api/overview-summary.html

!6

Practice reading these!

https://docs.oracle.com/javase/10/docs/api/overview-summary.html

Textbook Reading
• Read Chapters 4, 5, and 7

• Objects and inheritance

• Do this before the next lab!

!7

Procedural vs Object Oriented
• Programming is about functions and data

• In C (a procedural language) those were kept separate:

• Procedural programming focuses on what
needs to be done

• Object oriented programming focuses on the
data that must be manipulated

!8

struct employee {
 char* name;
 double salary;
};

double getTaxRate(struct employee* e) {...}

Nouns vs Verbs
• Procedural is about actions (verbs)
• O.O. is about things (nouns)
• A simple program:

• A more realistic example:

!9

Write a program that asks for a number and
then prints its square root.

A voice mail system records calls to multiple
mailboxes. The system records each message,
the caller's number, and the time of the call.
The owner of a mailbox can play back saved
messages.

Benefits of O.O.P.
• Focuses on Data and Relationships

• Break functionality of program down into
interacting objects
• Divide and conquer

• Clearly defined interfaces between components
• Fewer bugs from unexpected interactions
• Ask an object to modify itself

• Supports hierarchies of objects

!10

Objects and Classes in Java
• In Java:

• A class is type of object
• All objects have a class
• Primitives (int, float, etc) and functions are not objects

• Classes contain data and functions
• An object instantiates that data

• Class Constructor
• Used to create new objects
• Initialize variables
• Must call super(...) if 

a subclass

!11

public class Hello {
public static void main (){

System.out.println("hi.");
}

}

public class Car {
public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}
public void setX(int x) {

this.x = x;
}

Creating new Objects
• To use an object we need a reference to it

• Use the new command to instantiate an object
• Reserves memory on the Heap for that object class

• Each new object gets its own chunk of memory
• But they share functions 

and static class variables

!12

public static void main(...)
{

Car chevy;
Car honda;
honda = new Car(10, 20);

chevy null

honda 0x1423000

0x1423000 x 10

0x1423004 y 20

Stack Heap

Racing
• Get the code and run it (press ctrl-c to quit):

• Simple changes
• Green car
• Different car symbol
• Faster car

• Harder changes:
• Have two cars instead of one

• (Don't add any new classes yet)

!13

cd lec-oop/proc
javac SimpleTrack.java
java SimpleTrack

static Members
• static Functions and Data are not specific to

any one object instance
• One copy is kept for the entire class

• You can access static members with just the
class name
• Do not need a reference to a specific object

• Useful for globally available data or functions
that do not depend on any one object instance

!14

Math.random() // static method in Math class
Math.PI // static data object in Math class

Car myCar = new Car(10,10);
myCar.x // instance variable

Class
name

Object
name

Uses of static
• #1: Great for classes that cannot be instantiated:

• Math class
• Provides general utility methods, doesn't have any data that must be

unique for each object instance. You never do "new Math()"
• #2: Useful for sharing a single variable for all

instances of a class
• carsBuilt counter

• Isn't unique to each car
• Shouldn't need a  

reference to a car object 
to find out how many 
have been made

• Just don't abuse it

!15

public class Car
{
public static int carsBuilt;
public String license;
public Car(){
carsBuilt++;
//

}
}

Car c = new Car();
System.out.println(c.license);
System.out.println(Car.carsBuilt);

Modularizing the code
• Terminal class: constants related to printing colors
• Car class: a "V" drawn to the screen that randomly

moves back and forth. Starts at random position.
• Data?
• Functions?

• RaceTrack class: instantiates a car object and has
the main run loop of the program

!16

Loop forever...
 update the car's position
 for each horizontal position in the line...
 if the car is at that position, draw it
 else draw an empty space
 print newline character and reset the color
 sleep for 30 milliseconds

Work in lec-6/oop

Lots of objects
• How do we make an array of objects?

!17

Car cars[10];

for(int i=0; i < cars.length; i++) {
 cars[i].move();
}

Lots of objects
• How do we make an array of objects?

• Note: We can’t use the fancy loop when allocating
the cars… why?

!18

Car cars[] = new Car[3];

for(int i=0; i < cars.length; i++) {
 cars[i] = new Car();
}

for(Car c: cars) { // fancy array looping
 c.move();
}

Lots of cars!
• Modify your program so it can create 3 cars at

random positions and show them driving around

• Too easy? Try these:
• Each car can be a different color
• Make the left and right sides of the race track dynamically change

width and don't let any cars go beyond them
• If two cars collide, they should explode (i.e., display X and stop

printing those two cars from then on)
• Make the program stop when only one car is left

!19

Inheritance
• Classes can be defined in a hierarchy
• The child (subclass) inherits data and

functionality from its parent (superclass)
• Use the extends keyword in java

!20

public class RocketCar extends Car {
public int numEngines; // define new class members

public RocketCar(int x, int y, int n) {
super(x,y); // must call parent's constructor
numEngines = n;

}
public void draw()
{
drawSmokeTrail();
super.draw(); // optionally call parent version

}
}

Functions
• Inherited from parent class

• Can be replaced fully, or can call super.funcname() to
combine parent and child functionality

• Supports multiple declarations with different
parameters

!21

public void draw(Color c)
{
// draw with specific color

}
public void draw()
{
// this code is unnecessary
super.draw()

}

Vehicle Types
• Extend your program to define multiple types of

vehicles or objects with inheritance

• Some options:
• Wild cars move more erratically than regular race cars
• Some cars look different from others
• Trees only appear on some lines
• Walls are at the edges of the track and move less erratically than

cars. If a car hits a wall it crashes
• ...something more creative that you think of...

!22Time check? ~4:45

Limiting Visibility
• Goal of OOP: compartmentalize data and

function

• Classes can be:
• public - visible everywhere
• (no keyword) - visible within package

• Data and functions can be:
• public - callable, readable/writable by anyone
• private - only accessible within the same class
• protected - accessible in the class, subclass, and package
• (no keyword) - accessible within the package

!23

Visibility
• Answer question 1 on the worksheet.

• Data and functions can be:
• public - callable, readable/writable by anyone
• private - only accessible within the same class
• protected - accessible in the class, subclass, and package
• (no keyword) - accessible within the package

!24

O.O. Design
• Modern software engineering is largely about

designing classes, deciding how they relate, and
deciding their functions + data

• Good design:
• is simple: remove unnecessary classes, functions, and data

• is compartmentalized: separate functionality, isolate data

• has clean interfaces: inputs and outputs should make sense

• is reusable: create general purpose code when possible

!25

UML
• Unified Modeling Language

• Formal way to describe programs, components, functionality
• Designed for any object oriented programming language

• Defines 14 standard diagram types

• Structural diagrams
• Defines the pieces 

of the system and  
their relationships

• Behavioral diagrams
• Describe how the pieces 

interact

!26

Class Diagrams
• Tell us how different classes are related
• Lists key methods and data

!27

Simplified Class Diagrams
• How are these related?

• Human, Student, Hand, Pen, and Pencil?

!28

Human

Student

Pen

Pencil

Hand

"is a" "associated with"

Class Diagram Example

!29

Class diagrams describe the software's
components and how they relate

Human Hand

WritingUtensil

Pen

Pencil
Student

owns

holds

has 2

"is a" "associated with"

Arrow Direction
• The arrow shows which class must know

something about the other

• A child must "know" about its parent so it can
extend it
• The parent can be oblivious to that fact

!30

Human Hand

Student
"is a” (inherits from)

"associated with"

From Diagram to Code

!31

public class Student  
 extends Human
{
private WritingUtensil wu;

public Student() {
super();
wu = new Pen();
rightHand = new Hand(wu);

}
}

Human Hand

WritingUtensil

Pen

Pencil
Student

public class Human {
protected Hand leftHand;
protected Hand rightHand;

public Human() {
leftHand = new Hand();
rightHand = new Hand();

}
}

Adding More Detail
• Full UML diagrams also include:

• Attributes (class data elements)
• Methods (class functions)

• Also uses a whole bunch of arrow types

!32

Human

name: String
age: int

leftHand: Hand
rightHand: Hand

walk()
eat()

sleep()

Student
school: String
major: String

study()
goToClass()

lists the data
and functions
added to the
parent class

Voice Mail System
• Problem description:

• Is that enough to build the system?

• Requirements Engineering
• Science behind formally specifying what a system must do

!33

Phone rings, is not picked up, caller
invited to leave message; owner of
mailbox can later retrieve message

Deciding on the parts
• Things:

• Mailboxes
• Messages
• Users
• Phone numbers
• Dates

• Actions:
• Record message
• Replay message
• ...
• Remove messages?
• Next/Previous Message?

!34

A voice mail system records
calls to multiple mailboxes.
The system records each
message, the caller's number,
and the time of the call. The
owner of a mailbox can play
back saved messages.

MailSystem Class Diagram
• What are the components?

• What are their important functions and data?

• How are they related?
• Annotate arrows

!35

Inherits from

Makes use of

Work with 1-2
other students
and draw your
diagram on the

worksheet

MailSystem Class Diagram
• What are the components?

• What are their important functions and data?

• How are they related?
• Annotate arrows

!36

Inherits from

Makes use of
Client request: We

also want to support
text messages on the

same system!

How do things interact?
• Class diagram tells who interacts with who

• But doesn't illustrate how they interact

• UML Sequence Diagrams
• Show the steps required to do something

!37

Good Practices
• Diagram should be loosely connected

• Only make a class depend on another if it really needs it

• Use Inheritance to replace similar functionality
• Red balls, green balls, and orange squares
• Chickens, cows, and tanks

• Focus on key features and level of detail
• UML can be a waste of time, so apply to the useful parts

• Iterate design and implementation
• Don't try to do everything the first time
• Build and test components in stages

!38

UML Tool
• Violet UML tool makes it easy to draw diagrams

• Homepage: http://alexdp.free.fr/violetumleditor/
• Download from 2113 Java Module 2 page!

!39

choose mode:
Select
Class

Inherits from...
Is associated...

double click
to edit

http://alexdp.free.fr/violetumleditor/page.php

Banking
• Use VioletUML to represent the following program

!40

You have been hired by a bank to write software to track its accounts and
clients. Your bank software must keep track of two kinds of accounts: Checking
and Savings. Both these account types should support making deposits and
withdraws. The Checking account should also allow customers to write a check
and the Savings account should support adding interest.

The bank needs to be able to keep track of all of its customers, each of whom
may have one or more accounts. Every month, the bank needs to be able to
print out a list of customers and the balance inside each of their accounts. You
can assume that all customers have a unique name and that bank accounts
are assigned a unique ID number.

Draw a UML diagram to represent the software you would design to handle this
scenario. Be sure to mark the important functions and data members for each
class, and use the different arrow types to indicate which classes inherit or are
associated with others.

Summary
• Java emphasizes Object Oriented

Programming

• We use OOP to write better structured code
• A correct program is always better than a fast buggy one

• Think about how you organize classes
• Use private variables and expose clean interfaces
• Use inheritance to reuse code

• UML can help plan your code

!41

